POST*CODE
| Files | Size | Format | Created | Updated | License | Source |
|---|---|---|---|---|---|---|
| 1 | NA | csv | 2023-06-25 | a few seconds ago | License not specified |
A world postcode database containing the postcodes of 192 member countries. Use the POST*CODE® DataBase to look up, validate, cleanse or customize (by geographical region or country) addresses worldwide.
Data Files
Download files in this dataset
| File | Description | Size | Last changed | Download |
|---|---|---|---|---|
| eLITE_Sample.csv |
An extract of the dataset downloaded from the website, used for a quick visualization demo |
2MB | a minute ago | csv (2MB) |
eLITE_Sample.csv
Data view unavailable.
Download the data.This is a preview version. There might be more data in the original version.
Integrate this dataset into your favourite tool
Use our data-cli tool designed for data wranglers:
data get https://datahub.io//post-code
data info /post-code
tree /post-code
# Get a list of dataset's resources
curl -L -s https://datahub.io//post-code/datapackage.json | grep path
# Get resources
curl -L https://datahub.io//post-code/r/0.csv
If you are using R here's how to get the data you want quickly loaded:
install.packages("jsonlite", repos="https://cran.rstudio.com/")
library("jsonlite")
json_file <- 'https://datahub.io//post-code/datapackage.json'
json_data <- fromJSON(paste(readLines(json_file), collapse=""))
# get list of all resources:
print(json_data$resources$name)
# print all tabular data(if exists any)
for(i in 1:length(json_data$resources$datahub$type)){
if(json_data$resources$datahub$type[i]=='derived/csv'){
path_to_file = json_data$resources$path[i]
data <- read.csv(url(path_to_file))
print(data)
}
}
Note: You might need to run the script with root permissions if you are running on Linux machine
Install the Frictionless Data data package library and the pandas itself:
pip install datapackage
pip install pandas
Now you can use the datapackage in the Pandas:
import datapackage
import pandas as pd
data_url = 'https://datahub.io//post-code/datapackage.json'
# to load Data Package into storage
package = datapackage.Package(data_url)
# to load only tabular data
resources = package.resources
for resource in resources:
if resource.tabular:
data = pd.read_csv(resource.descriptor['path'])
print (data)
For Python, first install the `datapackage` library (all the datasets on DataHub are Data Packages):
pip install datapackage
To get Data Package into your Python environment, run following code:
from datapackage import Package
package = Package('https://datahub.io//post-code/datapackage.json')
# print list of all resources:
print(package.resource_names)
# print processed tabular data (if exists any)
for resource in package.resources:
if resource.descriptor['datahub']['type'] == 'derived/csv':
print(resource.read())
If you are using JavaScript, please, follow instructions below:
Install data.js module using npm:
$ npm install data.js
Once the package is installed, use the following code snippet:
const {Dataset} = require('data.js')
const path = 'https://datahub.io//post-code/datapackage.json'
// We're using self-invoking function here as we want to use async-await syntax:
;(async () => {
const dataset = await Dataset.load(path)
// get list of all resources:
for (const id in dataset.resources) {
console.log(dataset.resources[id]._descriptor.name)
}
// get all tabular data(if exists any)
for (const id in dataset.resources) {
if (dataset.resources[id]._descriptor.format === "csv") {
const file = dataset.resources[id]
// Get a raw stream
const stream = await file.stream()
// entire file as a buffer (be careful with large files!)
const buffer = await file.buffer
// print data
stream.pipe(process.stdout)
}
}
})()
Read me
A world postcode database containing the postcodes of 192 member countries. Use the POST*CODE® DataBase to look up, validate, cleanse or customize (by geographical region or country) addresses worldwide.